The AON7423 combines advanced trench MOSFET technology with a low resistance package to provide extremely low *R*_{DS(ON)}. This device is ideal for load switch and battery protection applications.

Absolute Maximum Ratings

Symbol
- **V_{DS}**
- **V_{GS}**
- **I_D**
- **I_{DM}**
- **I_{BS}**
- **I_{AS}**
- **I_{AR}**
- **E_{AS}**
- **E_{AR}**
- **P_D**
- **P_{DSM}**
- **T_{TJ}**

Parameter
- Drain-Source Voltage
- Gate-Source Voltage
- Continuous Drain Current
- Pulsed Drain Current
- Continuous Drain Current
- Avalanche Current
- Avalanche Energy
- Power Dissipation
- Power Dissipation
- Junction and Storage Temperature Range

Units
- **V**
- **A**
- **A**
- **mJ**
- **W**
- **W**
- **°C**

Maximum
- **-20V**
- **±8 V**
- **-50 A**
- **-200 A**
- **-28 A**
- **60 A**
- **180 mJ**
- **83 W**
- **6.2 W**
- **-55 to 150 °C**

Typ
- **16**
- **45**
- **1.1**

Max
- **20**
- **55**
- **1.5**

Units
- **°C/W**

Additional Notes
- 100% UIS Tested
- 100% *R_y* Tested

Thermal Characteristics

Parameter
- Maximum Junction-to-Ambient
- Maximum Junction-to-Ambient
- Maximum Junction-to-Case

Symbol
- **R_{MA}**
- **R_{MS}**
- **R_{MC}**

Typ
- **16**
- **45**
- **1.1**

Max
- **20**
- **55**
- **1.5**

Units
- **°C/W**

Notes
- *R_{ON}*
- *R_{DS(ON)}*
- *V_{DS}*
- *V_{GS}*
- *I_D*
- *I_{DM}*
- *I_{BS}*
- *I_{AS}*
- *I_{AR}*
- *E_{AS}*
- *E_{AR}*
- *P_D*
- *P_{DSM}*
- *T_J*
- *R_{MA}*
- *R_{MS}*
- *R_{MC}*
Electrical Characteristics (T$_J$=25°C unless otherwise noted)

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Parameter</th>
<th>Conditions</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>STATIC PARAMETERS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BV$_{DSS}$</td>
<td>Drain-Source Breakdown Voltage</td>
<td>I_D=250µA, V_{GS}=0V</td>
<td>-20</td>
<td>-1</td>
<td></td>
<td>V</td>
</tr>
<tr>
<td>I_{DSS}</td>
<td>Zero Gate Voltage Drain Current</td>
<td>V_{DS}=20V, V_{GS}=0V</td>
<td></td>
<td></td>
<td></td>
<td>µA</td>
</tr>
<tr>
<td>I_{GS}</td>
<td>Gate-Body leakage current</td>
<td>V_{DS}=0V, V_{GS}=±8V</td>
<td>±100</td>
<td></td>
<td></td>
<td>nA</td>
</tr>
<tr>
<td>$V_{GS(th)}$</td>
<td>Gate Threshold Voltage</td>
<td>V_{DS}=V_{GS}, I_D=250µA</td>
<td>-0.2</td>
<td>-0.5</td>
<td>-0.9</td>
<td>V</td>
</tr>
<tr>
<td>$I_{D(on)}$</td>
<td>On state drain current</td>
<td>V_{GS}=4.5V, V_{DS}=5V</td>
<td>-200</td>
<td></td>
<td></td>
<td>A</td>
</tr>
<tr>
<td>$R_{DS(on)}$</td>
<td>Static Drain-Source On-Resistance</td>
<td>V_{GS}=4.5V, I_D=20A</td>
<td>3.95</td>
<td>5</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{GS}=2.5V, I_D=20A</td>
<td>4.9</td>
<td>6.5</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{GS}=1.8V, I_D=20A</td>
<td>6.1</td>
<td>8.5</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td></td>
<td></td>
<td>V_{GS}=1.5V, I_D=20A</td>
<td>7.7</td>
<td>11</td>
<td></td>
<td>mΩ</td>
</tr>
<tr>
<td>g_{FS}</td>
<td>Forward Transconductance</td>
<td>V_{DS}=0V, I_D=20A</td>
<td>110</td>
<td></td>
<td></td>
<td>S</td>
</tr>
<tr>
<td>V_{SD}</td>
<td>Diode Forward Voltage</td>
<td>I_S=1A, V_{GS}=0V</td>
<td>-0.5</td>
<td>-1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_{S}</td>
<td>Maximum Body-Diode Continuous Current</td>
<td>V_{GS}=±4.5V, V_{DS}=10V</td>
<td>100</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

DYNAMIC PARAMETERS

- C_{iss}: Input Capacitance
- C_{oss}: Output Capacitance
- C_{rss}: Reverse Transfer Capacitance
- R_g: Gate resistance
- G_{fs}: Forward Transconductance
- V_{SD}: Diode Forward Voltage
- I_S: Maximum Body-Diode Continuous Current

SWITCHING PARAMETERS

- Q_d: Total Gate Charge
- Q_{gs}: Gate Source Charge
- Q_{gd}: Gate Drain Charge
- $I_{D(on)}$: Turn-On Delay Time
- t_r: Turn-On Rise Time
- $I_{D(soft)}$: Turn-Off Delay Time
- I_{f}: Turn-Off Fall Time
- t_r: Body Diode Reverse Recovery Time
- Q_{r}: Body Diode Reverse Recovery Charge

A. The value of R_{th} is measured with the device mounted on 1in2 FR-4 board with 2oz. Copper, in a still air environment with T_J=25°C. The Power dissipation P_F is based on R_{th} at $T_J<100$°C and the maximum allowed junction temperature of 150° C. The value in any given application depends on the user's specific board design.
B. The power dissipation P_F is based on $T_{J(MAX)}=150$° C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heatsinking is used.
C. Repetitive rating, pulse width limited by junction temperature $T_{J(MAX)}=150$° C. Ratings are based on low frequency and duty cycles to keep initial $T_J=25$° C.
D. The R_{th} is the sum of the thermal impedance from junction to case R_{th} and case to ambient.
E. The static characteristics in Figures 1 to 6 are obtained using <300µs pulses, duty cycle 0.5% max.
F. These curves are based on the junction-to-case thermal impedance which is measured with the device mounted to a large heatsink, assuming a maximum junction temperature of $T_{J(MAX)}=150$° C. The SOA curve provides a single pulse rating.
G. The maximum current rating is package limited.
H. These tests are performed with the device mounted on 1 in2 FR-4 board with 2oz. Copper, in a still air environment with T_J=25° C.
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 1: On-Region Characteristics (Note E)

Figure 2: Transfer Characteristics (Note E)

Figure 3: On-Resistance vs. Drain Current and Gate Voltage (Note E)

Figure 4: On-Resistance vs. Junction Temperature (Note E)

Figure 5: On-Resistance vs. Gate-Source Voltage (Note E)

Figure 6: Body-Diode Characteristics (Note E)
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 7: Gate-Charge Characteristics

Figure 8: Capacitance Characteristics

Figure 9: Maximum Forward Biased Safe Operating Area (Note F)

Figure 10: Single Pulse Power Rating Junction-to-Case (Note F)

Figure 11: Normalized Maximum Transient Thermal Impedance (Note F)

In descending order:
D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse

Note F: See page 6 for details.
TYPICAL ELECTRICAL AND THERMAL CHARACTERISTICS

Figure 12: Single Pulse Avalanche capability (Note C)

Figure 13: Power De-rating (Note F)

Figure 14: Current De-rating (Note F)

Figure 15: Single Pulse Power Rating Junction-to-Ambient (Note H)

Figure 16: Normalized Maximum Transient Thermal Impedance (Note H)

\[
D = \frac{T_{on}}{T} \\
T_{PK} = T + P_{DM} \cdot Z_{\theta JA} \cdot R_{\theta JA}
\]

In descending order, D=0.5, 0.3, 0.1, 0.05, 0.02, 0.01, single pulse

\[
R_{\theta JA} = 55°C/W
\]

Rev 0: Nov. 2011 www.aosmd.com Page 5 of 6
Gate Charge Test Circuit & Waveform

Resistive Switching Test Circuit & Waveforms

Unclamped Inductive Switching (UIS) Test Circuit & Waveforms

Diode Recovery Test Circuit & Waveforms